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(Received 7 February 1995 and in revised form 6 July 1995) 

A popular method used to incorporate thermodynamic processes in a shallow water 
model (e.g. one used to study the upper layer of the ocean) is to allow for density 
variations in time and horizontal position, but keep all dynamical fields as depth 
independent. This is achieved by replacing the horizontal pressure gradient by its 
vertical average. These models have limitations, for instance they cannot represent 
the ‘thermal wind’ balance (between the horizontal density gradient and the vertical 
shear of the velocity) which dominates at low frequencies. A new model is now 
proposed which uses velocity and density fields varying linearly with depth, with 
coefficients that are functions of horizontal position and time. This model can 
explicitly represent the thermal wind balance, but its use is not restricted to low- 
frequency dynamics. 

Volume, mass, buoyancy variance, energy and momentum are conserved in the 
new model. Furthermore, these integrals of motion have the same dependence on the 
dynamical fields as the exact (continuously stratified) case. The evolution of the three 
components of the absolute vorticity field are correctly represented. Conservation of 
density-potential vorticity is not fulfilled, though, owing to artificial removal of the 
vertical curvature of the velocity field. 

The integrals of motion are used to construct a ‘free energy’ $, which is quadratic 
to the lowest order in the deviation from a steady state with (at most) a uniform 
velocity field. €f is positive definite, and therefore the free evolution of the system 
cannot lead to an ‘explosion’ of the dynamical fields. (This is not the case if the 
velocity shear and/or the density vertical gradient is excluded in the model, which 
results in a non-negative definite free energy.) 

In a model with one active layer, linear waves on top of a steady state with no 
currents are, to a very good approximation, those of the first two vertical modes of the 
continuously stratified model. These are the familiar geophysical gravity and vortical 
waves (e.g. PoincarC, Rossby, and coastal Kelvin waves at mid-latitudes, equatorial 
waves, etc.). 

Finally, baroclinic instability is well represented in the new model. For long per- 
turbations (wavelengths of the order of the deformation radius of the first mode) the 
agreement with more precise calculations is excellent. On the other hand, the compar- 
ison with the eigenvalues of Eady’s problem (which corresponds to wavelengths of the 
order of the deformation radius of the second mode) shows differences of the order 
of 40%. Nevertheless, the new model does have a high-wavenumber cutoff, even 
though it is constrained to linear profiles in depth and therefore cannot reproduce 
the exponential trapping of Eady’s problem eigensolutions. 

In sum, the integrals of motion, vorticity dynamics, free waves and baroclinic 
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instability results all give confidence in the new model. Its main novelty, however, lies 
in the ability to incorporate thermodynamic processes. 

1. Introduction 
Level ocean models work with a variable density at fixed depths (see figure la), 

whereas homogeneous layer primitive equation models (HLPEM) have fixed densities 
but variable layer thicknesses (figure lb). The former can easily incorporate verti- 
cal heat and salt fluxes (through the surface, by diffusion, etc.), something that the 
HLPEM cannot do because of the requirement of a constant density in each layer. 
On the other hand, the HLPEM have generally 'more physics' than level ones (for 
the same amount of vertical degrees of freedom) because the equations employed in 
layered models are exactly like those corresponding, in the hydrostatic approximation, 
to a step-wise density profile, whereas level models are but a finite difference approx- 
imation. A case in point is a one-layer model, often used to study the barotropic 
variability (the whole water column on top of a rigid bottom) or baroclinic motions 
(one active layer on top of a motionless layer of heavier water). This is the simplest 
vertical structure possible, which is modelled correctly by a one-layer model but not 
by a model with one or two fixed levels. 

In order to be able to represent thermodynamic processes and at the same time 
keep their simplicity in the vertical structure, layered models must allow for lateral 
density inhomogeneities ; the simplest possibility corresponds to vertically averaging, 
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in each layer, the velocity, pressure gradient and buoyancy fields (figure lc). The 
inhomogeneous layers primitive equations models (ILPEM) were introduced more 
than two decades ago by Lavoie (1972) in a study of the effects of lakes on the 
lower atmosphere circulation, and later, by Schopf & Cane (1983) for the study of 
equatorial ocean dynamics. Since then there has been an explosion of works which 
use this simple idea (e.g. Anderson, 1984; DeSzoeke & Richman, 1984; Anderson 
& McCreary 1985; McCreary & Kundu 1988; McCreary, Lee & Enfield 1989; 
Cherniawsky et al. 1990; Cherniawsky & Holloway 1991; McCreary, Fukamachi & 
Kundu 1991; McCreary & Yu 1992; Ripa 1993a; McCreary & Lu 1994; Balmaseda, 
Anderson & Davey 1994; Fukamachi, McCreary & Proehl 1995; and Ripa 1995~). 
Moreover, Darby & Willmott (1993), Young (1994), and Ripa (1995b) developed 
simplified versions of these models, valid for low-frequency dynamics. The ILPEM 
were generalized in Ripa (1993a), allowing for an arbitrary number of layers and a 
lower boundary condition of either reduced gravity type or that corresponding to a 
rigid bottom, which may include topography. The conservation laws (or lack thereof, 
as is the case of potential vorticity) are also fully discussed in Ripa (1993~). 

There has not been a careful discussion about the validity of these models, even 
though they clearly have limitations, for instance they cannot explicitly represent 
the 'thermal wind' balance (between the horizontal density gradient and the vertical 
shear of the velocity) which dominates at low frequencies. It is important to realize 
that the ILPEM are indeed an approximation, because an inhomogeneous density 
field implies (through the hydrostatic balance) a vertical variation of the horizontal 
pressure gradient Vp, which is neglected. Dempsey & Rotunno (1988) justified the 
model of Lavoie (1972) by postulating a Reynold stress (dw') whose divergence 
exactly cancels the vertical variation of Vp; however, this is no more than an ad 
hoc hypothesis (which has also been invoked in some of the publications mentioned 
above). An interesting possibility consists in comparing the results of these models 
with those of more accurate ones (as it is done, for the particular problem of long- 
perturbation baroclinic instability, by Fukamachi et a!. 1995). In order to be able 
to do this comparison for other problems (in particular, fully nonlinear ones), it is 
necessary to have the 'next' model in a series of approximations with an increasing 
number of degrees of freedom in their vertical structure. 

With this idea in mind, a new model is developed in $3, which uses velocity and 
density fields varying linearly with depth (figure Id). The previous models and the 
new one will be denoted by ILOPEM and IL'PEM, respectively, because they are the 
first and second truncations of an 'exact' one, indicated by IL'"PEM, where the index 
v in IL" indicates the amount of vertical variation allowed, in the sense of the degree 
of polynomials in depth. The 1L"PEM is exact within the realm of the hydrostatic 
approximation, and is developed in o-coordinates in 52, to be used as a comparison 
with the results of those approximations. 

The IL'PEM is able to explicitly represent the 'thermal wind' balance; however, its 
use is not restricted to long time scales. A low-frequency approximation of the new 
model is presented in Ripa, (1995~) and may be called IL'QGM (and therefore, that in 
Ripa 1995b, is the ILOQGM). All these models are classified in table 1. (The symbols 9, 
h, u, and y denote buoyancy, layer thickness, velocity and streamfunction; an overbar 
indicates depth-average.) The model of Young (1994) has a free parameter fz, where 
f is the Coriolis parameter and z is the momentum mixing time scale. For fz = 0 
Young's model coincides with the ILOQGM (Ripa 199%). For f z  -+ 00, on the other 
hand, Young's model has an implicit representation of the velocity shear (through 
the thermal wind balance) and therefore it is not quite the same as the IL'QGM. 
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Independent Dependent variables Free energy Comments 

6f > 0 Exact 
ILO x,y,t 9, h, 2 vl, 9 gf >, 0 Young (fz + 0) 

6 5  5 0 Young (fz + 00) 

IL’ X,Y,t 9, 9,, h, 2, u, V ,  w,, 9, gf > 0 

ILrn x,y,rJ,t 9, h, 6, > 0 Exact 

variables PE QG 
HL X,Y,t h, 2 g- 

1 

TABLE 1. Classification of 1-layer or 1 $-layer models 

For simplicity, only one active layer is considered in the theoretical studies of each 
type of model. However, in realistic applications it is common to use a stack of layers 
of the same type (as indicated in figure 1) or even of different types (e.g. an IL’ on 
top of an ILo to model the upper layers of the ocean). 

One important test of the validity of the new model has to do with its conservation 
laws, more precisely on how many integrals of motion of the exact system are 
also conserved by the new one and how well they are represented. Energy and 
momentum conservation, as well as the integrals of motion related to functions of the 
density, are discussed in 94. The vorticity theorems have a special treatment, in $4.2, 
where a distinction is made between the ‘cr-potential vorticity’, which is conserved 
in the HLPEM but not in models with variable density (within each layer), and the 
‘density-potential vorticity’, which is conserved in the exact model. 

The exact model, as well as the HLPEM and the IL’PEM have a family of integrals 
of motion (called ‘Casimirs’) which are related to the vorticity and density fields. These 
integrals of motion are useful in the derivation of stability theorems (e.g. McIntyre 
& Shepherd 1987; Shepherd 1990; Ripa 1991, 1992~) or instability theorems (Ripa 
1992b). In order to find the Casimir integrals of motion it is useful to know the 
Hamiltonian structure of the problem; this is done for the new model in $5. Readers 
not interested in Hamiltonian dynamics can safely skip $5, except perhaps for table 3, 
where the Casimir integrals of motion of the exact model (ILmPEM), the new model 
(IL’PEM), the HLPEM and the IL’PEM are compared. 

The integrals of motion are used in $6 to build a conservedfree energy €f, quadratic 
to the lowest order in the deviation from a certain reference state. (The potential 
energy part of this integral of motion is the so-called available potential energy.) I 
would like to stress the importance of €f being quadratic (to the lowest order) in 
some perturbation field. 

(a) First, if the linear term vanishes then the quadratic one is independent of the 
choice of representation of the perturbation field. Consider, as an analogy, y = f ( x )  
and also y = F ( X ) ,  through some change of variable x = g ( X ) .  It is easy to see that the 
second differentials of y are, in general, different, i f ” ( x ~ ) ( x - x ~ ) ~  # ~ F ” ( X O ) ( X - X O ) ~ ,  
unless the first differential vanishes identically, f ’ ( x 0 )  = 0 = F’(X0). Consequently, 
if the perturbation is known to O ( E ) ,  then bf can be calculated to its lowest order, 
0 ( c 2 ) ,  something which is not true for integrals whose first variation does not vanish 
(McIntyre & Shepherd 1987). This explains why the ‘wave energy’ of the Kelvin- 
Helmholtz instability problem can be positive definite in depth coordinates and sign 
indefinite in density coordinates (Ripa 1990): the ‘mean flow energy’ is linear in the 
deviation from the basic state, but it has an O ( E ~ )  contribution whose sign is also 
coordinate-dependent (see Ripa 1993~). 
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Case A 
Rigid bottom 

h o b )  < z < ho(x) + h(x, t )  Layer def. 

9(x, z ,  t )  

d = -1 

g [ P k  z, t )  - P u p ]  / P o  

BC p = 0, w = D(h0 + h) /Dt  
at z = ho + h, 

BC 
a = l  

w = u.Vho 
at z = ho 

TABLE 2. 

Case B 
Reduced gravity 

-h(x , t )  < 2 < 0 

g b d o w n  - P(x,  2, t ) ]  /PO 

p = 0, w = -Dh/Dt 
at z = -h 

w = o  
a t z = O  

(b)  Second, whether cf'f is positive definite, non-negative definite or sign indefinite 
(see table 1) is important for the evolution of the system, as shown in $7 in a 
comparison of different types of models. A system with quadratic nonlinearity which 
has a sign-indefinite integral of motion 8f may be subject to the phenomenon of 
'explosive resonant triad': even if the linearized problem is stable (the normal modes 
have real eigen-frequencies) the interaction between modes with different sign of 
6'f leads to an 'explosive' nonlinear instability (Morrison & Kotschenreuther 1990; 
Keuny & Morrison 1994; and Vanneste 1995). 

Another test of the validity of the new model has to do with the waves it supports 
by linearizing the evolution equations in the deviation from a steady state. This 
is done in $8, where the free waves are compared with those of the exact model, 
and in $9, where a similar comparison is done of the baroclinic instability problem. 
Main conclusions are presented in $10 and some mathematical details are left for the 
Appendices. 

2. The full model: 1L"OPEM 
Consider one layer of active fluid, with thickness h(x, t ) ,  where x is a horizontal 

coordinate and t is time. The horizontal surface is either a sphere or a plane (there 
is no need to be more specific until the zonal momentum is considered); the vertical 
coordinate z is then either radial or perpendicular to the plane. There are two 
possibilities for the vertical structure of the model: either this active layer is on top 
of a rigid bottom, with topography denoted by z = ho(x), or below a horizontal 'rigid 
lid' at z = 0 (see cases A and B in table 2); throughout this section, these two cases 
correspond to the upper and lower signs respectively, but the notation in the bulk 
in this paper is chosen so that it is the same in both cases. The other boundary is 
a soft interface with a passive (infinitely deep) layer of constant density pup or pdown 

respectively (in particular, pup might vanish). The density p(x, z ,  t )  is used to define a 
field 9 in such a way that it is positive in both cases (see table 2; po is a reference 
density used in the Boussinesq approximation); this field will be called the 'buoyancy' 
even though it is such only in case B. 

In addition to 9(x, z, t ) ,  the dynamical variables are the horizontal u(x, z ,  t )  and 
vertical w(x,  z ,  t )  velocity fields, and the kinematic pressure p ( x ,  z ,  t ) .  The equations 
of motion in the primitive equations model (i.e. hydrostatic and with the horizontal 
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Coriolis force) without any forcing or dissipation are 

DS/Dt = 0, 

Du/Dt + f 2  x u + Vp = 0, 
v .u+azw = 0, 

&P = f 9 ,  

where D(.)/Dt := a,(.) + u * V(.) + wd,(.) and f is the Coriolis parameter (V is the 
horizontal nabla operator and f refers to cases A and B). The boundary conditions 
are presented in the last two rows of table 2. 

For the purposes of this paper, it is convenient to use a coordinate o, linear with 
z ,  and defined such that cr = -1 (o = 1) corresponds to the soft (rigid) boundary, 
namely 

In Case B (lower sign), usually ha = 0 (although one might imagine a laboratory 
experiment with a non-horizontal top lid). The reader interested only in the ocean's 
upper layer may ignore all occurrences of ho, and take the o variable as equal to 1 at 
the surface of the ocean and equal to -1 at the base of the active layer. 

In order to consider the dynamical fields as functions of (x, c, t )  - instead of (x, z ,  t) 
- the first step is to write down the transformation laws for the differential operators, 
from (ar ,  V, 3,) to (a",, 6, a"), where the tilde indicates derivation at constant o instead 
of at constant v (i.e. constant z ) .  When operating on quantities that are not a function 
of either cr or z ,  like h or $(for any 4 ;  see (2.10) below), the tilde will be dropped. 
The transformation laws are 

I 
I 

a, = a", + 2h-1(a",~)a,, 

v = 6 + 2h-'(6v)du, 
a, = F2h-'au, 

since a,v = -h/2; notice that d,v = Vv = 0, whereas d,v = +1, as it should. The 
horizontal Jacobian [a, bI2 := 2 - Va x Vb transforms as 

(2.4) [a,b]' = -2h-'(d,v [a,b]" +d,b[v,a]" +d,a[b,v]") 

where [a, b]" := 4 * 6a  x 6b. For instance, [9, cr]" = 2h-' [9, vIu, a relationship that is 
needed in Appendix A. Finally, the substantial derivative is written as 

D(.)/Dt = a",(.) + u * 6(.) + pa,(.) (2.5) 

(2.6) 

where 

Recall that ho and h are cr (or z )  independent and therefore D(ho, h)/Dt = (a, + u 
W h o ,  h). 

transformation laws, are found to be 
The evolution equations in the o-system, obtained from the set (2.1) using these 

DS/Dt = 0, 

a"$ + 6 * (hu) + haup = 0, 

Du/Dt + fi^ x u + 6p + 96v = 0, 

d,p = ih9,  

1L"PEM : 
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where D / D t  must be interpreted in the sense of (2.5). The boundary conditions at 
the two last rows of table 2 translate into 

p = o  @ o = -1, p = 0 @ a = +1. (2.8) 
Notice that in a-variables Cases A and B from table 1 are equivalent, i.e. there are 
no more double signs in (2.7). 

It is better to split the incompressibility approximation (2.7, second equation) into 
two parts by performing an integration in o, from -1 to 1, and using the boundary 
condition (2.8), which results in 

6 * [h(u - ii)] + hd,p = 0, 

8,h + V (hu) = 0, 
(2.9) 

where, throughout this paper, an overbar denotes a vertical average within the active 
layer (...) = h-' J(. . .)dz or, in o-coordinates, 

1 '  

2 -1  
(2.10) := - J (...)do. 

3. Setting up the new model: IL'PEM 
The HLPEM is obtained from (2.7) and (2.8) by specifying an initial state such 

that 9 = constant and d,u = 0 (i.e. u = ii). It is easy to see that these conditions 
are preserved by the dynamics, and then p = 0 follows from (2.7) (i.e. a is constant 
following particles), p = (1 + o)9h/2, and the second and third equations in (2.7) 
reduce to the classical shallow water equations 

Dh/Dt + hV ii = 0, 
Dii/Dt + fi x ii + QVh + QVho = 0, 

HLPEM { (3.1) 

where D/Dt  = 8, + ii * V .  If 9 is not initially uniform, then a vertical shear will in 
general develop, d,u # 0, and a fully three-dimensional problem will have to be 
solved, unless some closure hypothesis is made in order to limit the amount of 
vertical structure allowed. The IL'PEM corresponds to simply a-averaging the 
equations (2.7): if 9 is o-independent then p = (1 + o)$h/2; calculating the vertical 
average of Vp, it follows that 

DQ/Dt  = 0, 

ILOPEM Dh/Dt + hV ii = 0, (3.2) 
Dii/Dt + f 2  x ii + QVh + :hVQ + QVho = 0 

(3.3) 

(see for instance Ripa 1993~). In this paper, I will go one step further, by considering 
the ansatz 

Thus, in the reduced gravity case, + u, is the surface velocity and ii - u, is the 
velocity at the base of the active layer; similarly for the buoyancies 9 + 9, and 8 - 9,. 
Recall that 101  d 1 :  a positive buoyancy 9 requires 9 > [9,1. However, 9, is related 
to the (instantaneous) Brunt-Vaisala frequency squared, N 2 ,  by 

1 u(x, a, t )  = qx,  t )  + o u,(x, t) ,  
9(x, a, t )  = qx ,  t )  + o Q,(X, t).  

{ 

Q,(x, t )  = ;N2(x ,  t)h(x, t) ,  (3.4) 

and therefore physically acceptable values correspond to 9 > 9, > 0. 
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In order for the linear vertical structure of (3.3) to be preserved, all occurrences of 
o2 in the equations of motion need to be eliminated; the easiest recipe is to replace 
them by their mean value, i.e. o2 H 1/3 (here, H means 'replacement'). For instance, 
if a = d + o a, and b = & + o b,, then ab w + a,b,/3 
and (ab), = ab, +a&. Therefore, using (3.3) in the first equation of (2.9) and the 
boundary condition (2.8), the o-velocity p is found to have a term proportional to 02, 

which is then replaced by its vertical average, i.e. 

+ o (ab),, where 2 = 

p = 2h-'(1- 02)V * (hu,) H ji = lh-'V 3 * (hu,). (3.5) 

Similarly, using the ansatz (3.3) in the mass conservation equation, [a", + (ii + ou,) - 
6 + jia,](g + 09,) = 0, and separating the mean and linear parts, the resulting 
approximation is 

DS/Dt = 0 H DS/Dt + o (DS/Dt), = 0. (3.6) 

Consequently, the equation DS/Dt = 0, at all (x, o, t), is approximated by DS/Dt = 0 
and (D$/Dt), = 0, at all (x, t),  where in general 

(3.7) 

DA/Dt = &A + U - VA + iu, * VA, + PA, 

= atA + U * VA + ih-'V * (hu,A,), 

(DAID~), = &A, + U - VA, + U, - vA. 

Finally, the pressure field is obtained using the ansatz (3.3) in the hydrostatic 
balance, the fourth equation of (2.7), and the boundary condition (2.8), which yield 
p = (1 + a)h$/2 - (1  - 02)h9,/4. Calculating Vp and separating its mean and linear 
part in o gives Vp H 5 + (T (Vp),, where 

(3.8) } 
- -  
Vp = (9 - i9,)Vh + ihV(Q - $9,) + QVho, 

(Vp), = i9,Vh + i h V Q  + 9,Vho. 

Putting all this together the evolution equations for the new model are found to 
be 

D$/Dt = 0, 

(D$/D~),  = 0, 

IL'PEM : d,h + V * (hii) = 0, (3.9) 
Du/Dt+fz^ x i i++=O,  I ( DU/D~)  , + f2  x U, + (vP), = 0, 

where both parts of the material derivative and pressure gradient are defined in (3.7) 
and (3.8). How to introduce forcing in these equations is discussed in $4.1, after the 
discussion of the integrals of motion, because forcing has to be included in a way 
which is compatible with the conservation laws. 

In the original system (2.7), Newton's equation can also be written as %,u + pd,u + 
~2 x u + v ( p  + 9 v  + i u 2 )  = vV9, where x = f +z^ 0 x u, which is more useful than the 
equations with the term u - V u  for the derivation of the vorticity and energy theorems. 
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A similar operation can be done with the new model (3.9). Defining 
- x := f +P.V x ii, 

2, :=P.Vxu,, 
z; := ; - j2  + 'u2 + ($ - - :9, ) h+$ho, 

b, : = i i . u u + 9 , ( h 0 + ; h ) ,  
6 0  

the last two equations in (3.9) can also be written as 

(3.10) 

(3.11) 

These expressions show clearly that rotational forces arise because of density inho- 
mogeneities in the layer (VG # 0, V8, # 0). 

These expressions also show that if $ and 9, were independent of position along a 
closed rigid boundary, then the circulations f u*dx and $ u, -dx around that boundary 
would be constant. However, this constancy need not be expected: from the original 
system (2.1) it follows that fulp * dx is constant, where uIp is the velocity in a given 
isopycnal (this equation makes sense only for non-outcropping isopycnals); $ i i .  dx is 
not conserved in the continuously stratified case. 

d,u + pu, + 4 x (XU + ;X,U,) + vz; = hoVS + ihV(Q - $,), 
dtu, + 4 x (xui i  + xug) + Vb, = (ho + ih)V9, - ihV$. 

4. Conservation laws 
One important test of the validity of the approximation (3.9) has to do with which 

conservation laws of the original system (2.1) - or (2.7) - are preserved, and how. 
The solutions of the original system (2.1) are constrained by the existence of several 
integrals of motion, e.g. volume, mass and energy d($o,Y~, €)/dt = 0, with 

c c  

(YO, 91, €) := (h ,  ha, E) da, 
J J D  

where D is the horizontal domain of the system, da is the differential of area, and 

E := h(u2/2 + ~ 8 ) .  (4.2) 

Volume and mass are also conserved for the new system (3.9) since d,h+V.(hu) = 0 
and d,(hQ) + V * (h?4ii+~h9,uu) = 0. As for the energy, in terms of the fields (3.3) of 
the new model the energy density (4.2) is found to be equal to 

14.3) 

(4.4) 

(4.5) 

in the p-plane case (f = f o  + Py). From the new equations (3.9) it follows that the 
rate of change is 

(4.6) 

Consequently if D is a zonal channel and dxho = 0 (i.e. all boundaries are x- 
symmetric) then total zonal momentum is conserved. For a sphere, the equivalent of 

E = LhU2 2 + ;huZ, + ih2(Q - f8,) + hhoQ. 

Energy conservation is also guaranteed for the new model, since 

dtE + V * (hiig + ihu,b,) = 0. 

M := h(u - j o y  - $y2) 

d,M + V . (EM + fu,hu,) + i d x ( h 2 $ )  + h$(d,ho) = 0. 

The zonal momentum density is given by 
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the zonal momentum is the angular momentum around the Earth's axis, with density 
M := hcos 8(a + 252Rcos8), where 0, R and 8 are the Earth's rotation velocity, 
radius and latitude, respectively. A similar conservation law is easily found from the 
equations of motion (3.9) in spherical coordinates. 

The original system (2.1) also has a family of integrals of motion, namely the 
Casimirs %?[A] := JJ hA(9) da, where A(9) is an arbitrary function of the buoyancy, 
in particular, Yn defined above correspond to % [ P I  for n = 0, 1. The new approximate 
model (3.9) does not conserve all these functionals. However, in addition to volume 
90 and mass $1, the new model does conserve buoyancy variance 

since, in fact, 

8, [h(G2 + $$)I + V [hu(g2 + i9:) + fhu,S,Q] = 0. (4.8) 

In summary, the approximate model IL'PEM satisfies the laws of volume, mass, 
energy, momentum and buoyancy-variance conservation, and, moreover, the depen- 
dence of these integrals of motion on the dynamical fields is exactly the same as those 
in the original model IL""PEM, evaluated with the fields of the ansatz (3.3). Ertel's 
theorem, however, needs a more elaborate discussion, and is the subject of $4.2. 

4.1. Forcing 
Forcing is introduced in the equations (3.9) of the new model in a way which is 
compatible with its conservation laws for energy, momentum and mass (or heat and 
salt content). For instance, let the system represent the upper layer of the ocean (case 
B in table 2), and assume a wind stress z acts at the surface (CT = 1) and a friction 
force acts at the base of the active layer (0 = -1): equations (3.9) are modified as 

8,ii + . . . = -r(ii - u,) + z / h ,  

&u, + . . . = -3r(u, - a) + 3t/h, 
(4.9) 

where r could be a constant or some function of h and (li - u,l, which is the jump 
in speed between the base of the active layer and the passive layer below. This is 
illustrated in figure 2(a). The coefficients of z / h  in (4.9) are chosen so that the energy 
and momentum conservation equations, (4.4) and (4.6), are modified into 

d,E + . . . = t (u + u,) - rh(ii - u , , ) ~ ,  
d,M + . . . = z P - rh(a - u,) * P. 

(4.10) 

Notice that the work done by the wind and the interfacial drag is proportional to the 
top and bottom velocities, ti + u, and z i  - u,, respectively. 

On the other hand, a buoyancy input r ( x ,  t )  through 0 = 1 can be added to the 
present model by rewriting the first two equations in (3.9) as 

(4.11) 

Any value of v is compatible with the equation 

8, (ha) + V * ( h ( d  + f~~9,)) = I'. (4.12) 

The choice v = 1 means that buoyancy is introduced linearly with depth with a 
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FIGURE 2. (a) The graph shows how stress at o = 1 is introduced in the model (e.g. wind stress in 
the upper ocean layer). The solid line represents the vertical flux and the dashed one its vertical 
divergence, which is the forcing (both are normalized to unit surface value). (b)  A similar situation, 
for the buoyancy (or heat) flux. 

vanishing value at o = -1 (a,($ - 9,) +. . = 0). See figure 2(b). One typical example 
of this arises in the study of the thermodynamics of the upper layer of the ocean: 
Assuming that the density is controlled by the temperature, i.e. the buoyancy can be 
written as 9 = gCrT ( T ( x ,  o, t )  - Tdown) where T is the temperature of the active layer, 
the buoyancy forcing is r = gaT(pC,)-'Q, where Q represents the heat input into 
the upper layer, tlT is the thermal expansion coefficient and C, is the specific heat 
at constant pressure. In this case (4.12) gives the rate of change of the local heat 
content. 

4.2. Potential vorticity 
Vorticity is usually introduced via Stokes' theorem. However, the way it appears 
naturally in this work is through Ertel's theorem. What one needs is a covariant 
(coordinate-independent) representation of Ertel's operator 2 = qQ( .)/axp where 
xP is any set of coordinates and q p  = 9 x P  dejines the components of the absolute 
vorticity. In Cartesian coordinates (xfi = x, z), which are orthogonal,? 

2 9  = (2 x a,u). v + (f + 2 - v x u)az, (4.13) 

whereas in o-coordinates (xp = x,(T), which are not orthogonal, 

2 = q q V + q a d ,  
with 

2 x a,u f + 2 * V x u  
h 

, q := q := ___ 
h 

(4.14) 

(4.15) 

t Notice that -2 x Vw is not included in the horizontal vorticity (because of the hydrostatic 
approximation). The factor 2 in (4.13) is introduced in order to have a simple expression for 9 in 
o-coordinates; in case A of table 1, this factor equals -2. However, for the purposes of this paper 
what matters is the simpler expressions (4.14) and (4.15). 
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A very general vorticity theorem states that for any scalar s 

D(9s) Ds -- - 9- + ; [9, s]" 
Dt Dt 

(4.16) 

If s is a Lagrangian constant Ds/Dt = 0 and [9,s]" = 0, then 3 s  is also conserved 
following fluid particles ; this is known as Ertel's theorem. 

Thus, in the 1L"PEM the 'density-potential vorticity' 99, is conserved because 
D$/Df = 0 and obviously [$, $1' = 0. This Lagrangian constant must be distinguished 
from q (= 30) defined in (4.15), which may be called the 'o-potential vorticity'. In 
the HLPEM (8 = constant, u = U), Da/Dt = 0 and obviously [$,a]' = 0: Ertel's 
theorem guarantees conservation of q, i.e. Dq/Dt = 0. With density gradients within 
the layer, though, this potential vorticity is not conserved because, in general, neither 
Da/Dt = 0 (there is a velocity shear) nor [$,a]' = 0 (isopycnals are not parallel to 
the surface). Instead, using s = o in (4.16) it follows that 

(4.17) 

where the decomposition (2.4) of the Jacobian has been used. Use of s = x in (4.16) 
gives the rate of change of vector q (= 9 x )  as 

(4.18) 

with a similar use of (2.4). These two equations give the evolution of the vorticity field, 
in a-coordinates : the first term on the right-hand side represents vortex-stretching 
and the rest is the baroclinic torque. 

In the approximate model IL'PEM, derived from 

- P x u ,  q = q = -  
h 

(notice that there is no representation for q,) and q 

the ansatz (3.3), 

(4.19) 

= ij + a q, with 

f + P . V X U  2 . v  xu,  
h *  

q =  and qg = 
h 

(4.20) 

Given an arbitrary scalar field s = 3 + as,,, 9 s  is represented by % = q VS + qs,, 
and (Zs) ,  = q Vs,, + q,s,. In order to check the validity of theorem (4.16) for the 
new (approximate) model, it is useful to analyse its derivation for the exact model 
in o-coordinates (2.7), which is done in Appendix A. Following the same steps as in 
Appendix A, but with equations (3.9) of the new model, it is found that 

(4.21) 1 Dq/Dt = q 9 Vji - q,,ii + h-'[v, $Iu, 
(Dq/Dt), = -3ijji+ h-' ([vc,sI + [ v , 9 u I ) ,  

Dq/Dt = (r - VU + qu, + h-'2 x (v,V$ - 9,VS). 

The third equation is an exact representation of (4.18). The first two may not appear 
to be a good representation of (4.17), but in fact they are. In order to show this, 
it is necessary to go back to the continuity equation (2.9). In $3 that equation was 
used to find p = 2h-'(1- 02)V (hu,) and thus ,ii = $h-'V (hu,), which is the only 
quantity needed in the evolution equations (3.9) of the new model, i.e. at the level 
of approximation represented by the ansatz (3.3). However, in the derivation of the 
vorticity equation, outlined in Appendix A, the o-derivative of p is also needed. In 
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the approximate model this is given by 

a,,p = -3ap. (4.22) 

Even though p,, := aU,u = 0, oa,p = -p; notice than this satisfies the trivial 
equality a,,(op) = 0. Consequently, the first terms on the right-hand side of the ij 
- and q,, equations in (4.21) are the correct representation of those of (4.17), namely 
Y p  = q . V p + G  = q - V p - q , p  and a(Tp), = a q , ~ V p + q ~ ~ ( ~ p , ) + q & , p  E -3oqp. 

In summary, the new model satisfies the correct vorticity equation for q = E, 
ij = E, and q ,  = (pa),. However, it does not have an exact representation of the 
general theorem (4.16), i.e. for a general Ys, for the following reason. Let Da/Dt = A 
and Db/Dt = B, with a = ii+a a,, and similarly for A, b, and B .  It is easy to show that 
D(ab)/Dt = Ab + aB is correctly represented in the mean, i.e. D (ab) /Dt = Ab + aB, 
but all four evolution equations (i.e. those for ii, a,, 6 and b,) are needed in order 
to get this result. Consequently, there is one element missing in (4.21) to allow 
a derivation of D(Ys)/Dt: the evolution equation of q,,. In fact, at this level of 
approximation there is not even a representation for q,, (one would need to know 
aoau for that). Therefore, the only potential vorticity whose evolution is correctly 
represented by the new model is q = Yt7 (which, however, is not conserved). The 
evolution of the 'density potential vorticity' 29 (which in the exact model 1L"PEM 
is conserved) is not correctly represented by the new model for lack of knowledge of 
the vertical curvature of the velocity field. Neither does D(99) lDt  vanish identically 
nor is JJ h% guaranteed to be constant. 

__ - 

5. Hamiltonian structure 
Let me review the main points of Hamiltonian theory (see for instance Shepherd 

1990; Ripa 1993b). If a dynamical system, described by some fields cpa(x,t), is 
Hamiltonian, then there exist a functional X[cpa,x,  t] and a Poisson tensor (operator) 
Jab such that the evolution equations can be written in the form 

(with implicit summation over repeated indices). The x-momentum A[q" ,  x, t], when 
it exists, is such that 

Thus, 2 and A are related to t- and x-translations. Finally, a Casimir U[cp",x] 
satisfies 

ab " J -=O, 
6 cpb 

(5.3) 

i.e. it does not produce any transformation of the dynamical field. If there exist one or 
more Casimirs, then the Hamiltonian system is singular. In such a case, X and A are 
defined modulo the addition of Casimirs (with the appropriate units); Z - a&? + V 
(with a some constant) is a Hamiltonian in a frame moving with velocity a along x, 
i.e. 

(5.4) 

All Casimirs are integrals of motion. If the system is invariant under t-translations 

acpa a v a  6(X - a A  + %) 

at ax 6 cpb 
- +a- = Jab 
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Model Casimirs 

HLPEM JJ hA(4) 

ILOPEM JJhAi(Q)+hqAdQ) 

IL~PEM JJ h (a0 + a19 + a29') 

ILmPEM JJ h A(9 ,39 )  

NB A(. . .) and ak are arbitrary. 

TABLE 3. 

(x-translations), then 2 (A) is conserved. Let 2 - a d  + %? = constant for any 
initial condition: most stability/instability theorems can be derived by searching 
for a constant a and a Casimir U such that the first variation of this integral of 
motion from a certain steady basic state vanishes: S ( S  - a&! + U) = 0. Thus, if 
the second variation 6 * ( 2  - a A  + %?) is sign definite, then the basic state is stable 
(e.g. Shepherd 1990; Ripa 1990); conversely, if the basic state is unstable, then the 
second variation must be sign indefinite and can be used to make statements on the 
structure of growing perturbations (Ripa 1992b). The possibility of deriving these 
stability/instability theorems for a certain singular Hamiltonian system is somehow 
linked to the number of Casimirs available to construct those integrals of motion. 

The model in this paper is Hamiltonian, with 2 equal to the total energy 

1% da 
2 [ 3 ,  9,, h, U, u,] = (5.5) 

and a Poisson tensor Jab given in Appendix B. If the coasts are zonal, then A from 
(4.5) is a momentum in the sense of (5.2), independent of whether A is conserved or 
not, i.e. of whether ahojdx vanishes or not. Finally, 9, = JJ hF (n = 0, 1, 2) are 
Casimirs. However, no vorticity-related Casimirs have been found for the new system 
(see Appendix B) because of its failure to represent D(99)lDt = 0, as explained in 
$4.2. The implication is that it is not possible to solve for S ( 2  - a& + %) = 0 at a 
basic state with currents (except for a trivial one, discussed in 36). 

Given the importance of the existence of Casimirs for the derivation of stability/ 
instability theorems, it is interesting to compare these integrals of motion for the 
different models discussed here; see table 3. In the fully three-dimensional case, the 
most general Casimir is the integral of an arbitrary function A of the buoyancy 9 
and the density potential vorticity 9 9 ;  in the present model A is reduced to just a 
parabola in 9. In the particular case of a uniform $-field, that integral reduces to the 
volume JJ h. However, in this case (HLPEM) there are additional Casimirs, namely, 
the integral of an arbitrary function A of the o-potential vorticity 4. Finally, when 
9 = $(x , t )  (IL'PEM), the function A must be linear in ij, but with coefficients Al and 
A2 which may depend on 9. 

Notice that q does not appear in the Casimirs of either 1L"OPEM or IL'PEM, and 
therefore its absence is certainly not a limitation of the latter; one may wonder why is 
it present in the Casimirs of the HLPEM and the ILOPEM. From the exact equation 
(4.17) it follows that 

at(hq) + 6 * (huq) + a,(hpq) = 6 ( p q  + 2 x vVS) ,  (5.6) 



On improving a one-layer ocean model with thermodynamics 183 

whereas from the approximate system (4.21) it can be derived that 

dt(hij) + V * ( h q )  = V ( P q  + 9 x PB), (5.7) 
where 5 = zi6 + iaab,. It is clear that (5.7) is an exact representation of the vertical 
average of (5.6). The rate of change of J J h p  is driven by the term in the right-hand 
side, more precisely by the boundary - integral of the normal component of p q  plus 
the tangential component of vV9. For the HLPEM p ,  q and V9  vanish identically. In 
the approximation represented by the ILOPEM, p and q vanish for lack of resolution 
of the vertical gradients, whereas 9 can be chosen to be position independent along 
each rigid boundary (Ripa 1993a); that is why JJ hq is conserved in systems without 
vertical density gradients inside the active layer. 

6.  Free energy 
The negative sign in the second-to-last term in the energy density (4.3) might lead 

to the impression that the new system could be spontaneously unstable, i.e. to be 
able to grow without limit. That is not necessarily correct. In order to address this 
problem one must have an integral of motion which is quadratic, to the lowest order, 
in the deviation from a (steady) reference state; the sign indefiniteness or definiteness 
of this integral determines whether or not the fields can grow without bound. Thus, 
consider the following decomposition of the dynamical fields : 

where the reference state [a, O,, H ,  u, U,] has yet to be specified, and the following 
integral of motion: 

n=O 

where a and the a,, are constants (cases with a # 0 are only considered when A is 
conserved, i.e. = 0 and for zonal coasts). The question is: can we choose these 
constants so that the first variation of 8f from the reference state vanishes? If such 
an &f can be constructed, it will represent an integral of motion which is quadratic, 
to the lowest order, in the deviation from this reference state. 

In order for this integral of motion to be extreme, 6df = 0, its functional derivatives 
with respect to all dynamical fields must vanish at the reference state. Thus (for the 
P-plane case), first, 

i.e. the velocity field in the reference state must be zonal and uniform. (In the case of 
spherical geometry, where A is the angular momentum, a is then a uniform angular 
velocity of the reference state.) Secondly, 

This equation implies that the spatial structure of the fields O,(x) and H ( x )  cannot 
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be arbitrary, since their ratio must be constant, so that the squared Brunt-Vaisala 
field is uniform, N,“ = 2 0 , / H  = const., in the reference state. Thirdly, 

(6.5) 

Now, the pressure force acting on the velocity shear u, is (Vp), = S,V(ho+ih)+:hVQ. 
Taking 9, as common factor and using equation (6.4) for a2 it follows that, at the 
reference state, (VP), = -@,Val ; since al is constant this force vanishes. Therefore, 
the evolution equation for u, is satisfied in the reference state. Finally, 

6 6  
69 
-2 = 0 * ho + ;H + N;20 = -a1. 

(6.6) 

The depth-averaged pressure gradient is 6 = ( 5  - $!J,)Vh + ihV(Q - 49,) + QVho; at 
the reference state then = -GVal+V[U(foy+~py2)-~U2--ao] = UV(foy+ifiy2), 
which is easily shown to be equal to -f2 x U ,  i.e. the evolution equation of ii is also 
satisfied in the reference state. 

Notice that ho(x) and the four constants (a, ao, al,  a2) fully determine the structure 
of the reference state. If there is neither topography, ho = 0, nor current, a = 0, then it 
can be shown, from (6.3)-(6.6), that this solution has uniform 0-, 0,-, and H-fields. 
On the other hand, with a mean flow, a # 0, the fields @, O,, and H (as well as ho) 
must be x-independent in order for their evolution equations to be satisfied. In either 
case the evolution equations for 9,9,, and h are trivially satisfied in the reference 
state. Of course, not all steady states qualify as a ‘reference state’ to build &f because 
the left-hand side in the equations above for a, ao, al,  and a2 may not be constant 
for some of them. 

Using the values of a, ao, a, and a2 from (6.3)-(6.6) and subtracting a trivial 
constant (the value of & - a d  + Ca,,lPn at the reference state) it follows that the 
integral of motion just constructed has the form 

2 u2 - U(foy + i p y 2 )  + iN;2 (@ - 0,) = ao. 
6 6  
6h 2 

(6.7) 

where g r ( x )  := G. The available potential energy density, i.e. the last three terms, can 
be rewritten in the form 

[gr  - iN:H - iN,26h](Sh)2 + hNF2(6g + iN,Z6h)2 + i h N F 2 ( 6 9 ,  - (6.8) 
which shows explicitly that the lowest-order &f (quadratic) is positive definite if and 
only if 

(@ > 0, > 0), which are the conditions for the buoyancy to be everywhere positive 
and for the density to increase with depth. Given any initial condition, a ‘nearby’ 
reference state with the characteristics discussed here can be found. Then conservation 
of &f implies that the system cannot deviate much from it, i.e. it cannot ‘explode’.t This 
is illustrated in figure 3 where the centre point symbolizes the reference state. Other 
equilibrium points, two stable ones (elliptic) and two probably unstable (hyperbolic), 

Since 8j has cubic terms in [6&69,,6h,6ii, 6u,], in addition to the quadratic ones, this is not a 
statement on a well-defined distance in state space. This represents an important difference between 
primitive equations and quasi-geostrophic models, for which the free energy is exactly quadratic. 

g ,  > ;N:H > o (6.9) 
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FIGURE 3. Contour lines of an integral of motion in a hypothetical (two-dimensional) state space. 
The system can never move arbitrarily far from the centre point, which is then a suitable ‘reference 
state’ to prove the boundness of the system evolution. Four other equilibrium states are shown (two 
stable and two probably unstable). In a system with more degrees of freedom (e.g. a fluid!) an 
equilibrium state may ,be an elliptic or hyperbolic point of some integrals of motion but not so of 
others. 

are shown in the same figure; there may be equilibrium points that are neither elliptic 
nor hyperbolic points of a particular integral of motion, i.e. its first variation does 
not vanish at that point. Most stability and instability theorems can be derived by 
finding an integral of motion with an elliptic or hyperbolic point at an equilibrium 
state which corresponds to non-uniform currents. In order to find such an integral 
of motion, for systems like those discussed in this paper, it is necessary to have 
Casimir integrals of motion which depend on the vorticity field. As explained in 
55 these integrals of motion do not exist for the system in this paper (see table 3) 
and therefore it is apparently not possible to derive stability theorems by ‘Arnol’d’s 
method’ (Arnol’d 1965, 1966). 

7. Comparison with other models 
Here I compare the free energy of the present model with that of the other systems 

discussed in this paper; in all cases I will consider a reference state with neither current 
nor topography, ho = 0, for simplicity. For the model in this paper, this corresponds 
to CI = 0 in equations (6.3)-(6.6) above, which require all three parameters g, ,  N:, and 
H to be constant. 

Let me start with the continuously stratified case, which it is taken here as the 
‘exact’ one. From (2.2), (4.2) and the Casimir integral of motion in table 3, it follows 
that the free energy must be of the form 

where the arbitrary function A(9) is chosen so that the first variation of bf vanishes 
at [9 ,h,u]  = [ O ( a ) , H , O ] .  For a linear stratification in the reference state, 

O(O) = g ,  + iN,!H O, (7.2) 
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it can be shown that A(9) is a second-order polynomial, and that 

+h6h( 1 - 0)69 + hNL2 oz) . (7.3) 

This integral evaluated with the perturbation fields of the form (3.3) gives precisely 
the free energy of the present model (6.7). (Notice that if N,' = 0 then it is not possible 
to construct this integral of motion, quadratic to the lowest order in the deviation 
from the reference state.) 

The free energy for the classical shallow water equations (3.1), or the HLPEM, is 

HLPEM : &f = - {ha2 + g , 6 h 2 ) .  iJL (7.4) 

This is the limit of (7.3) for a uniform buoyancy field, in the sense that both N: 0 
and 69 + 0, but in such a way that SS/N;  + 0. The free energy for the ILOPEM, 
(3.2), is 

ILOPEM : gf = - SJ' { hu2 + ($'I2h - g t / 2 H ) 2 }  
2 D  

(7.5) 

(see Ripa 199%). Notice that the quadratic part of &f is positive definite for 
HLPEM but not for ILOPEM. Variations of h and which leave h2$ unaltered do 
not change the free energy; for infinitesimal perturbations this corresponds to the 
force-compensating mode, 2g,h' + HQ' = 0. Spontaneous growth of such perturbations 
is not prevented by conservation of &f. Figure 4 depicts how the present model and 
the HLPEM have a positive definite c?~, whereas the ILOPEM has a non-negative 
definite &f. 

The HLPEM (3.1) is a particular case of both (3.2) and (3.9), obtained for any 
initial condition with a uniform buoyancy field (9 = g,, 9, E 0). This condition is 
preserved by the dynamics and makes (7.5) coincide with (7.4). Notice, however, that 
the ILOPEM (3.2) is not a particular case of the new model (3.9) and certainly (7.5) is 
not the limit of (6.7) when 9, -+ 0 because this implies N;2 -+ co. In this sense, the 
step from the - now classical - system (3.2) to the new one (3.9) is different than that 
from (3.1) to (3.2). 

7.1. Reduced model with ua E 0 
In their original model, Schopf & Cane (1983) had an intermediate layer in which 
they allowed variable density stratification but neglected the velocity shear, i.e. 9, # 0 
but u, = 0 in the notation in this paper. This type of model can be obtained from 
(3.9), neglecting all u, as well as the equation for this field, which gives 

I (a, +ii * V)$ = 0, 

(8, +ii * V)9, = 0, 

8th +v (ha) = 0, I 
(8, +ii * v)ii + f; x ii + $ h - ' ~ [ h 2 ( $  - $9,)1 = 0. J 

The energy density of this reduced system is E = ;ha2 + ih2($ - :9,), whereas 
the Casimir integrals of motion have the form % = JJhA($,9,), where A($,&,) 
is completely arbitrary. Comparing the Casimirs with those of the continuously 
stratified case, it is seen that this system has 'far too many' because A($, 9,) need not 
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(a) HLPEM (b) ILOPEM 

(c) Young’s (d )  Present model: IL’PEM 

FIGURE 4. Topology of the free energy bf for different types of models discussed in the text, sketched 
as contour lines and three-dimensional surfaces in a two-dimensional state space. The HLPEM, with 
constant density, have an 8f which is positive definite in the deviation from a reference state, as the 
example in figure 3. A similar structure is found for the bf of the present model, IL’PEM, which 
allows for both horizontal and vertical variations of density. The ILOPEM, with only horizontal 
density variability, has a non-negative definite Bf : there are ‘zero energy’ variations of the density 
and depth fields, which leave the flow unaltered. Finally, the fz -+ co limit of Young’s (1994) model 
has sign-indefinite 8, : the system may spontaneously ‘explode’. 

be a vertical average of a function of 9 + 0 8,. At this level, with neither topography 
nor forcing, this model is equivalent to the ILOPEM (3.2), with 9 replaced by 9 - $9,’ 
including in (7 .3 ,  which gives a free energy of the form 

which is non-negative definite. 

7.2. Reduced model with 9, 3 0 
The limit f~ + co of Young’s (1994) model yields the opposite case: 9, = 0 but 
u, # 0. That model is meant to be valid for low frequencies, where the velocity field 
is diagnosed from the geostrophic balances 

(the latter is the thermal wind relation alluded to above). Young’s model satisfies 
d&f/dt = 0 where 

is shown to be a Hamiltonian to his equations in Ripa (1995b); its structure in state 
space is compared in figure 4 with that of df‘f from the present model, the HLPEM 
and the IL’PEM. The negative sign in the second term in (7.9), with respect to 
(6.7), indicates that his system can ‘explode’ by itself, e.g. through the mechanism of 
‘explosive resonant triads’ (see the Introduction). 

A model with 9, = 0 but u, # 0, not restricted to low frequencies, can be obtained 
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from (3.9) neglecting all 9, as well as the evolution equation of this field, namely 

(7.10) 1 (a, +a - v)B = 0, 

dth +V * (hii) = 0, 

(8, +ii V)ii + $u, VU,  + f 9  x ii + ih-'V(h2B) = 0, 

(8, +i i *  V)U, + u,, *Vii + fi x u, + ihVB = 0. 

The energy density of this reduced system is E = ihii2 + ihu: + ih2Q, whereas the 
Casimir integrals of motion have the form V = JJ hA(Q), where A(3)  is completely 
arbitrary. The free energy is then 

(7.11) 

which is non-negative definite, and differs with Young's integral of motion (7.9) in 
the sign of the second term. 

8. Waves 
In order to investigate the solutions of the new system, I will start with the simplest 

problem: linear waves superimposed on a state of no motion. This will be chosen as 
the reference state of 96 for a problem without topography, ho = 0. Equations (6.6), 
with u = 0, and (6.4) imply that 0 - 0, is a constant, whereas equations (6.6) and 
(6.5) imply that + 0, is a constant. Consequently, all fields in the reference state 
are uniform, and the linear wave is defined by 

where g,, N:, and H re  constants, in the range g ,  > 4N;H > 0. Upon substitution 
in (3.9) the following set is obtained to O ( E ) :  

a$ +;N;H v - d, = 0, 
at$; = 0, 

a,h' +H V ii' = 0, 

+f$ x a' + ( g ,  - 2N;H)Vh' + iHV(Q' - $9;) = 0, 

a,ub +f2 x u; + :N;H Vh' + 4HVQ' = 0. 

The second term in the equation for 9' is the a-advection of the reference buoyancy 
p ' 0 ,  since 

(8.3) 
It is easy to show that the linearized system has an integral of motion which is the 
lowest-order term (quadratic) of 8f from (6.7). 

A time-varying eigensolution of (8.2) will have 9; = 0; assuming a vertical normal 
mode structure 

p' = $v * d,. 
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FIGURE 5.  Non-dimensionalized dispersion relation for PoincarC waves: w / f  us. (kR,  lR), where f is 
the Coriolis parameter and R = c/lfl; the parameter c may have one of two values (see figure 7), 
depending on the vertical structure of the wave (see figure 8). 

upon substitution in (8.2) it follows that p‘(x,t) and uc(x,t) satisfy the linearized 
shallow water equations 

a t p c  + c2v a uc = 0, 

a,uc + j-2 x uc + v p c  = 0, 

if c2 and (x, x 2 ) T  are an eigenvalue and eigenvector of 

where ( y l ,  y2) = c-’grH(x1, fS x2) and 

S = i N 2 H / g ,  2 r  (0 < S < 1). (8.7) 

The solutions of (8.5) are well known (Pedlosky 1979; Gill 1982). For instance, 
at mid-latitudes assuming a common exp(i J k dx - i at) phase dependence for all 
perturbation fields, the eigensolutions are found to be PoincarC 

(8.8) w2 = f 2  + k2C2 

(see figure 5 )  and Rossby 
2.Vf x k  

k2 + f 2 / c 2  
w =  (8.9) 

waves (see figure 6 ) ;  with coasts, there are also Kelvin waves with celerity c. Similar 
results are obtained in the equatorial P-plane or the sphere. 

The same solutions are found in the exact three-dimensional system (2.7), the 
only difference being that in the continuous case there are infinitely many vertical 
eigenmodes. More precisely, 

NrH m = - 
2c ’ u’ cc uc(x, t )  cos[m(a - I)], (8.10) 
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FIGURE 6.  Non-dimensionalized dispersion relation for Rossby waves: w/(f iR)  us. (kR,  lR),  where 
fi  is the northward gradient of the Coriolis parameter. 
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FIGURE 7. Separation constant c for both eigenmodes of the model of this paper (solid lines) 
compared with the first two eigenvalues of the continuously stratified model (dashed lines), as a 
function of the stratification N; of the reference state. In the reduced gravity case, a value of 
N;H/2g1  = 1 is huge because it implies a vanishing buoyancy jump at the base of the active layer 
relative to the density of the lower layer. 

where m is determined by 
S 

m tan(2m) = - * 
1 - S '  

(8.11) 

see Appendix C. 
Both values of the parameter c (which in the limit without rotation is the celerity 

of gravity waves) for the present model are compared in figure 7 with the first two 
eigenvalues for the exact continuously stratified model (8.11), calculated for the same 
stratification N,' and buoyancy jump at the interface between both layers g ,  - iN,'H 
(see, for instance, Ripa 1986). The comparison is excellent for the first mode and 
good for the second one, except for very strong stratifications, e.g. for S = 1 which 
corresponds to a vanishing buoyancy jump at 0 = -1. Notice that typical values of 
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FIGURE 8. Vertical structure of the two eigenmodes of the model of this paper, as a function of the 
stratification N,' of the reference state. Solid lines: ratio of the mean ii' and shear dk wave velocities. 
For the first mode (upper curve in figure 7) Idu/ < 121 and therefore the velocity ii' + CJ du has no 
reversal with depth (-1 < CJ < 1). For the second mode (lower curve in figure 7), there is always a 
reversal, closer to the free boundary (i.e. the surface in the rigid bottom case or the interface in the 
reduced gravity case). Dashed lines: ratio of the contributions to the horizontal force due to the 
gradient of density and the gradient of layer thickness. In the first mode, the second one dominates 
g,Vh' >> HV9'. The neutral modes of the ILOPEM (symbolized by the 'horizontal' directions in 
figure 4b) correspond to g,h' = - iQ 'H,  which is the N,' = 0 point in the curve of the second mode. 

S are quite small. For instance, the restratification scale of Tandon & Garrett (1994) 
gives S = i(VQ/Q)2R$ << 1, where R$ = g,H/ f2  is very close to the deformation 
radius for the first mode. 

In addition to the (Poincare and Rossby) waves, there is a neutral solution, w = 0, 
of the linearized equations (8.2) 

k (8.12) 

Notice that this neutral mode has a finite free energy, unlike the case of the force- 
compensating mode of the IL'PEM; see discussion after (7.5). 

The two eigenvectors of (8.6) correspond to waves without and with flow reversal 
in the vertical, as shown in figure 8. For the first mode 0 < u,/U < 0.8, as a function 
of N,?H/2gr, and consequently ii + o u, cannot change sign with o. On the other 
hand, for the second mode -0.27 < U/ug < 0, resulting in a sign reversal of U + oil, 
at a value of o between 0 and 0.27 (depending on the value of N,?H/2gr). Recall 
that the waves of the present model have 9; = 0: figures 7 and 8 show that in the 
limit of weak stratification, the first and second modes tend to the waves and the 
force-compensating mode of the IL'PEM, namely 

- 
c2 = grH, J = g = o  

(8.13) 
c2 = N,2H2/12, ii' = 0, 2g,.h' = -9'H. 

S = N,?H/2gr + 0 : 
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9. Baroclinic instability 
In the previous section it was shown that the new model represents reasonably well 

the free waves superimposed on a motionless reference state. It is important to see 
how well the model reproduces known instability problems, particularly those of a 
parallel flow ii = U S  and u, = U,P in the basic state, instead of the resting state 
used to define the wave in (8.1). I will take both and U ,  as constant, since the 
model is expected to deal correctly with instabilities related to the horizontal shear; 
the real test is in problems where the vertical structure of the perturbation is a crucial 
component. 

I will compare the results of this model not only with those of a more exact 
calculation, but also with those of a two-layer HLPEM, which has about the same 
number of vertical degrees of freedom as the present one. The parameters of the 
two-layer model are chosen so that in the equilibrium state both layers have the same 
thickness (equal to H/2) and their buoyancies are equal to 91 = gr + N;H/4 and 
92 = g, - N:H/4. The basic state whose stability is studied has uniform velocities 
given by U1 = U + U,/2 and U2 = f - U,/2. These values correspond to averaging 
of the buoyancy and velocity fields in each layer. The two-layer HLPEM has 6 fields, 
whereas the one-layer ILOPEM and IL'PEM have 4 and 7 fields respectively. 

One particular area in which the new model can be tested is that of Kelvin- 
Helmholtz instability, which is posed using f = 0 in the evolution equations. However, 
the present model does not produce unstable normal modes for this problem. This 
is not surprising, since Kelvin-Helmholtz instability is related to the existence of a 
critical level, which is impossible to reproduce with the linear vertical profiles used 
here. I will then concentrate on baroclinic instability, choosing a non-vanishing value 
for the Coriolis parameter. With f # 0, the fields ($,$,, h)  must have uniform 
y-slopes, in the basic state, to geostrophically balance the velocities U and U,. 

Consider then the basic state and perturbation defined by 

gr + AY P(X, t )  ( )  = p;?) + &  [%%;) d ( X ,  t )  +0(&2). (9.1) 

U,; ub(x, t )  

Notice that there are three coefficients (A, B ,  C) to balance two velocities (f, U,): 
there is an extra degree of freedom, indicating that the new model can represent a 
non-uniform density field at both the top and bottom boundaries, something that, 
for instance, the two-layer model cannot do. In order to make a comparison with the 
other models, I will choose B = 0 in (9.1); however, this 'extra degree of freedom' 
might yield new instability phenomena, to be explored elsewhere. The other two 
coefficients are then calculated from the geostrophic balance of the basic flow, namely 

where p = 0 is assumed, for simplicity. 
If the perturbation is assumed proportional to exp i [k(x  - c t )  & ly], then there 

are two non-dimensional measures of the horizontal wavenumber lkl = (k2  + 1 2 ) 1 / * ,  

namely 

For simplicity, I will assume a weak stratification (S << l), which implies x0 >> K ~ .  
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In this limit, KO equals Ik[ scaled by the first Rossby radius, whereas that non- 
dimensionalization of Ikj with the second deformation radius gives K , / -  in the 
present model or ~ 1 / n  for the exact one; see (8.13) and figure 7. I will now present 
the main results for the eigenvalue c; a detailed calculation is presented in Ripa 
(1995), where ,&effects are also discussed.f Notice that if U, = 0 then c must be 
real (independent of u) because in this case the free energy &f is a positive definite 
integral of motion in the deviation from the basic state, which is therefore stable (see 
for instance Ripa 1990; Shepherd 1990). Long and short perturbations correspond 
formally to the limits N,' -+ 0 and g ,  + 00. 

9.1. Long perturbations: KO = 0(1) 
With K O  = O( l), i.e. ~1 - 0, the eigenvalue c is given by 

c = [U(1 + 2 4 )  - U, 

A = (U ,  - D ) 2  - 4 4  U, [ U + (1 + K : )  U,/3] . 

A1/2] / (2 + 2 4 ) ,  
IL' : (9.3) 

Growing and decaying normal modes (Im (kc )  # 0) are found for wavenumbers such 
that 

1 3 u  
112 

[1+3($)'] - - - - - .  2 2 u, (9.4) 

(Notice that the critical wavenumber vanishes for 0 = U,.) Young & Chen (1995) 
obtained exactly the same result using the subinertial model of Young (1994), in the 
limit in which buoyancy is mixed but momentum is not (fz + 00; see the Introduction 
and table l).$ This result is supported by the more exact calculation of Fukamachi 
et al. (1995), which also used a linear profile for the basic flow but allowed for an 
arbitrary depth dependence for the perturbation. Their calculation corresponds to 
U = U,, and their eigenvalue coincides with the value in (9.3) evaluated for 0 = U,. 
The two-layer model, on the other hand, gives 

c = [U(1 + 2 4 )  - u,/2 _+ 41/21 / (2 + 2 4 ,  
(9.5) 

A = (U,/2 - 0)2 - ~K;U, [U + (1 + K ; )  U,/2], 
2-layer : 

and growing and decaying normal modes require 

Finally, the ILo model (i.e. inhomogeneous layer but depth-independent fields) gives 

c = [U(l+ 2 4 )  - u, * 41/21 / (2 + 2 4 ,  
- 2  

A = (U,  - U )  - ~ K ~ U , U ,  
ILO : (9.4) 

where U, is implicit, through the thermal wind balance (see Fukamachi et al. 1995; 
Ripa 1995~; and the 'slab model' limit ($7 -+ 0) in Young & Chen 1995). Instability 

t Since these are low-frequency instabilities, the results can be obtained by using the geostrophic 
balance and by working with the equations for (8, 9,,, i j ,  4a). 

$ That model does not have u,, as an explicit variable but, rather, is implicit through the thermal 
wind relation. The parameters (U, C, p )  of Young & Chen (1995) corresponding to this result are 
U = u, C = -Uu, and p = 0. 
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FIGURE 9. Minimum wavenumber, IC; = (k2  + 1 2 ) g r H r / f 2 ,  for baroclinic instability, as a function of 
the ratio of the mean velocity U to the velocity shear U, in the basic state. (The magnitude of U ,  
equals one half the velocity difference between the top and bottom of the active layer.) IL' : present 
model and f z  -+ co limit of Young & Chen (1995); at U = U, the dispersion relation coincides 
with the exact result of Fukamachi et al. (1995). ILo: vertically average_d model (Ripa 1995a, and 
ft -+ 0 limit of Young & Chen 1995); this model predicts stability for U / U ,  ,< 0. 

is now restricted to 

U , U > O ,  u;>- 4 ( (;)1-2)2. (9.7) 

The main mechanism for this instability is the interaction of a topographic Rossby 
wave and a neutralforce-Compensating mode which are the modes obtained by making 
U = 0 in (9.6) (Ripa 1995~).  

The instability regions in parameter space of the different models considered here 
are compared in figure 9, whereas an example of a dispersion relation is shown in 
figure 10. The ILo and IL' models seem to have similar results for (large) positive 
values of U/U,. Moreover, for = U, they compare well with the exact IL" model. 
The reason for the discrepancy between the ILo and IL' models for negative U / U ,  
constitues an interesting research subject. 

9.2. Short perturbations: I C ~  = O( 1) 
For short wavelengths (compared with the deformation radius of the first vertical 
mode) top and bottom boundaries are effectively rigid, and one can compare with 
the exact result of the Eady problem (Gill 1982), which gives 

Eady : c = k U, [{  (2/7cl) - tanh (rc1/2)} { (2/lcl) - coth (u1/2)}]"~. (9.8) 

A very important property of this dispersion relation is the short-wavenumber cutoff 
of the instability, namely c is real for IC] > rcYit w 2.3994. (In particular, the flow is 
stable in a narrow enough channel.) 

However, the calculation of Young & Chen (1995) gives only the ICO -+ co limit 
of (9.3), namely c = U & i U , m  for all ICI, which is the correct value of (9.8) for 
IC' = 0, but fails to provide a short-wavenumber cutoff. This represents a serious 
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RGURE 10. Dispersion relation of long perturbations in the baroclinic instability problem. The 
solid (dashed) line shows the real (imaginary) part of the complex 'phase speed' c. The three cases 
correspond to the IL', ILo and 2-layer models, ordered by the bifurcation point (see figure 9). 

limitation of Young's (1994) model, because in a fully nonlinear calculation there 
may be a spurious growth of short perturbations. Fukamachi et al. (1995) also obtain 
only the I C ~  = 0 value of (9.Q and for U = U,, namely c = U ,  (1 & i m ) .  

The new model fares much better, since, in fact, it gives 

( ( K !  - 144) /3)1'2 
IL' : c = v * u, 

lc; + 12 (9.9) 

This formula is exact for icl = 0 and has a high-wavenumber cutoff corresponding to 

as rcl + KI is about 43% too small. These discrepancies are not unexpected, because 
the present model restricts the vertical structure to a linear function 0 whereas the 
solution of Eady's problem has a growing perturbation with an exponential depth 
dependence, namely a combination of exp ( f ~ 1 0 / 2 ) .  

Kcrit = f l=  3.4641, which is about 44% too large. The asymptotic value of c - U 

Finally, the two-layer model gives 

( K;' - 64) ' I 2  
2-layer : c = U k U, 

2 ( K ;  + 8) . 

The short-wavenumber cutoff ~ f ' ~ ~  = $ = 2.8284 is an overestimate by about 18% 
of Eady's one, the value of c- U for tcl = 0 is also overestimated (by about 15%) and 
the asymptotic value of c - U as IC' --f KI is one-half that of Eady's. The dispersion 
relations are compared in figure 11. 

In summary, the new model does not produce Kelvin-Helmholtz unstable modes 
(which require critical levels) but gives a fair representation of baroclinic instability. 
The latter includes a short-wavenumber cutoff similar to that encountered in Eady's 
problem. The free waves, discussed in the last section, and these results add confidence 
to the validity of IL'PEM. The importance of the new model does not lie, of course, 
in reproducing known results (with a limited vertical structure) but in the possibility 
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FIGURE 11. As in figure 10, for the short perturbations in the baroclinic instability problem. The 
three cases (ordered by the bifurcation point) correspond to the (exact) Eady solution and the 
approximations of the 2-layer (Phillips model) and IL’ models to the problem. 

of adding a new ingredient to these and other calculations, by means of the possibility 
of a horizontally varying stratification. 

10. Conclusions 
A new type of ocean circulation model proposed here has an active layer with 

variable thickness, within which horizontal velocity and density (or temperature and 
salinity) have a linear profile with depth, with coefficients which are function of 
horizontal position and time (the generalization to many layers is trivial). This 
system represents an advantage over the (fixed) level models, in the sense that even 
with one layer it is able to support Kelvin, PoincarC and short Rossby waves, i.e. 
phenomena for which horizontal divergence is important. The waves are a very good 
approximation to those of the first two vertical normal modes of the continuously 
stratified system. 

The new model has an advantage over the simpler shallow water equations (with 
homogeneous layers) in that it is able to accommodate thermodynamic processes 
because it is not restricted to a constant density. Finally, the new system also represents 
an advantage over the now classical layer models with only lateral variations of 
density, because it can sustain the thermal wind balance (i.e. the vertical shear of 
the current associated with a horizontal density gradient) as well as distinguish 
between the densities at the top and bottom boundaries of the active layer (e.g. the 
temperatures at the ocean surface and at the base of the upper layer). 

The model developed here satisfies the correct conservation equation for total 
energy, momentum, volume, mass and buoyancy variance, as well as the correct 
evolution equation for the three-dimensional vorticity field. However, this model does 
not include the law of (density) potential vorticity conservation. In order to have it, 
it would be necessary to deal with the vertical curvature of the velocity field. The 
integrals of motion are used to construct a ‘free energy’, which is conserved as well 
as being quadratic to the lowest order and positive definite in the deviation from a 
reference state with uniform Brunt-Vaisala frequency and (at most) a uniform flow. 
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The implication of this conservation law is that the free evolution of the system 
cannot lead to an 'explosion' in which the dynamical fields grow without limit. As a 
comparison, the model of Young (1994) can experience that type of explosion from 
a state of rest (through the mechanism of 'explosive resonant interactions') or by an 
unarrested baroclinic instability (i.e. which does not show the saturation seen in the 
quasi-geostrophic model; see Shepherd 1988). 

The new model is not restricted to low frequencies, for instance Dr Amit Tandon 
(personal communication, 1994) has shown that the IL'PEM gives the same results 
for the mixed layer restratification problem as the exact calculation of Tandon 
& Garrett (1994), which is a high-frequency problem, i.e. with time scales of the 
order of the inertial period 2n/lfl. The real test of the validity of the present 
model will be its ability to reproduce observations in more complicated applications, 
particularly if it can achieve the same results than models with more complicated 
vertical structures. 
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Appendix A. Ertel's theorem in a-coordinates 
Operating with i x d, over the u-equation in (2.7) written in the form 

D u / D t + f 2 x u + V p + 9 V v = O  (A 1) 

(A 2) 

The terms on the right-hand side of this equation can be shown, using a - V(2 x b) = 
2 x a V - b - 2 x a Vb - u 2 * V x 6, to be equal to h(q9 - u + qd,p - Y u ) .  Finally, 
using the continuity equation Dh/Dt + hV - u + hd,p = 0 (4.18) follows. On the other 
hand, taking the curl of the u-equation written in the form 

and using d,p = -M,v one gets 

D(hq)/Dt - 2 x (8,vPs - d,9'?v) = -d,u * P(2 x U) + fd,u + hqd,p. 

Jtu + pd,u + hq& x u + P b  = vP9 (A 3) 

one gets 

Using d,h + 9 - (hu) + hd,p = 0 (4.17) then follows. Finally, if Ds/Dt = 3, then 

a"t(hq) + P * (hqu) + d,(hqp) = hq * V p  + [v ,  91". 

D(ds)/Dt + (du) * VS + (dp)d,s = dS, 

(A 4) 

(A 5 )  

where d is V or a,. Calculating Vs (4.18) + 8,s (4.17) and adding it to q D(Vs)/Dt + 
qD(d,s)/Dt it is easily found that Vs - ( 2 u )  + d,s(Tp) cancels with the terms 
originating in (du) Vs + (dp)d,s. Theorem (4.16) is then proved using the expansion 
(2.4) for the horizontal Jacobian. 0 
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Appendix B. Hamiltonian structure 

J = J1 + Jz,  where 
The Poisson tensor for the new model can be written, for simplicity, in the form 

0 0 0  0 0 
0 0 0  0 
0 0 0 V * (  
0 0 v @ x  q02x 
0 0 0 qu2x 3q2x 

0 0 0 h-'(VQ)* h-'V*(9, 
0 h-'(V9,)* 3h-'(VQ)* 0 0 

0 0 0 0 

9,V(h-' -3h-'V9 0 V(h-'u,* 

. 032) 

0 
-h-'VQ -h-'V9, 0 0 

Jz = - 

The Hamiltonian is the total energy, whose variational derivatives are given by 

Using these and J in (5.1) the equation of the new model (3.9) is easily obtained. 0 
Given two 'admissible' functionals of state, d and a, their Poisson bracket is 

defined by {d ,B}  := ( 6 d / 6 c p a )  Jab (69+?/dcpb), and must be antisymmetric: { d , g )  = 
- {g, d} ; with ( B  l-B 2) it follows that 'admissible' functionals d[cpa, x, t] must 
satisfy 

The Hamiltonian in (5.5) is admissible as can be seen from ( B 3 )  and the no-flow 
boundary condition, ii ii = u, - A = 0 @ x E aD. The momentum -4 is admissible 
if the coasts aD, are zonal. In order to be conserved, it is further needed that 

In order for V"Cp"] to be a Casimir, JUb(6V/6cpb) = OVu, the following equalities 
{A, X }  = 0 0 dho/ax = 0. 

must be satisfied: 
h 

ITi*VQ+ii,.V9, =o ,  (B 5 )  
i i .  V9, + 32, Vg = 0, (B 6 )  

v.G=o, (B 7) 

(B 8) 

(B 9) 
where the short notation $a := 6W/6cpa has been used. It is easy to show that 
Yn = Js h@ ( n  = 0, 1, 2) are admissible and Casimirs. There do not seem to be more 
Casimir integrals of motion for the new system, though. For instance, consider the 
possibility V = Js hm. It can be shown that conditions (B 5-B 8) are satisfied for 
this functional, but that (B 9) is not; ( B 9 )  gives V * (q - V9, + qJ , )  = 0, i.e. (99), = 
constant, a condition which is not preserved by th+namics. A similar conclusion 
is reached with other putative Casimirs, e.g. JJ h 9 a 2  : all conditions are satisfied, 
except for the last one (B9).t  

t From the point of view of geometrical mechanics, this means that these are not Casimirs, but 
generating functionals that transform along the 'direction' of u,. 

h 

0. h 
h 

-QVQ - 9,V9, + hVh + h@ x &+ hq,Z x 2, + u,,V*~, = 0, 

9,V(h-'Q) - 3h-'&,VQ + V(h-'u, -2) + q,Z x Z + 3@ x 2, = 0, 
h 
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Appendix C. Vertical normal modes in 0-coordinates 

o + EQ’ + o ( E ~ ) ,  etc.), gives 
Linearizing (2.7) around a state of no motion and with buoyancy @(a) (ie. 9 = 

a”,S, +iN;H p’ = 0, 

a”,h’ +H 9 * U’ + Ha,,p’ = 0, 

a”,u’+f2 x u ‘ $ 9 p ’ + i ( l - ~ ) O v h ’ = O ,  

a,p‘ = ;H $1 + ;hie .  

where iN?(a)H = dO/da. A (vertical) normal mode has a structure 

d = U“(x,t) [dF(o)/da] , 
p’ = pc(x, t) [ dF(o)/do - i(1- Q) O(o)G(-1)] , 

where G(o) = O-’(dF/da). The second term between square brackets guarantees 
that p’ = 0 @ 5 = -1, as required by (2.8). In order for the third equation in (C 1) 
to give a,uc + f 2  x uc + v p c  = 0, it is necessary that 

(C 3) h‘ = pC(x ,  t)G(-1). 

The last and first equations in (C 1) then give 

} (C4) 
9’ = ; p ‘ ( x , t ) N ; ( o ) H  [ (o  - l)H-’G(-l) - c - ~ F ( ~ ) ] ,  

~ - I I  = a,pc(x, t )  [(G - I)H-~G(-I) - c - ~ F ( ~ ) ]  , 

where the structure function F( 0 )  must satisfy the following differential equation, 
whilst the boundary conditions are needed for p’ to vanish at 0 = &l, as required by 
(2.8): 

d2F(o)/do2 + i N ; H 2 ~ - 2 F ( ~ )  = 0, -1 < 0 < 1 

F = 0, a t o = 1  (C 5 )  
OH F = -2c2 [dF/da] , at CT = -1 

(C 6 )  
N;H 

@(a) = g ,  + 5 - = gr(1 + O S ) ,  
2 

{ 
Finally, the second equation (C 1) gives the second modal equation, d,pc +c2V.uc = 0. 
The case discussed in the main text corresponds to 

where g, ,  N,’ and H are constants. 
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